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Abstract

In this study, an extended random decrement method, which considers the correlation among measurements, was
employed to reduce the measured dynamic responses of general torsionally coupled multi-story building under

random excitations. The Ibrahim time domain technique was then applied to calculate the modal frequencies and
damping ratios based on only a few ¯oor response measurements. To obtain the complete mode shapes, an
interpolation method was developed to estimate the mode shape values for the locations without measurements. The

seismic responses at ¯oors with and without measurements were also calculated. Numerical results through a seven-
story torsionally coupled building under ambient random excitations demonstrated that the proposed method is able
to identify structural dominant modal parameters accurately even with highly coupled modes and noise
contamination. A small number of response measurements, no requirement for input excitation measurements and

simple on-line calculations make the proposed method favorable for implementation. # 2000 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

In recent years, system identi®cation for structures
has become an area of considerable research interest.
The identi®ed system parameters can be used to evalu-
ate structural damage and ascertain the expected struc-

tural response to a future, di�erent excitation. In
structural control, the design of control devices
requires a knowledge of the system parameters of the

controlled structure. Thus, it is important that system
identi®cation be carried out in conjunction with struc-
tural control.

The system identi®cation of torsionally coupled

buildings from dynamic measurements has been rarely
proposed in the literature [1,2]. Most papers discussed

identi®cation only for planar frame structures [3±6] or
identi®ed two translational and one torsional modal
parameters for building structures separately [7,8].
However, buildings with nominally symmetric plans

are actually asymmetric to some degree and will
undergo lateral as well as torsional vibrations simul-
taneously when subjected to purely translational exci-

tations. As a result of coupled lateral-torsional
motions, the lateral forces experienced by various
resisting elements (such as frames and shear walls, etc.)

will di�er from those experienced by the same elements
if the building has a symmetrical plan and responds
only to planar vibrations. The disregard of torsional
vibration may cause an underestimation of structural

responses [9]. Therefore, it is more appropriate and

Computers and Structures 74 (2000) 667±686

0045-7949/00/$ - see front matter # 2000 Elsevier Science Ltd. All rights reserved.

PII: S0045-7949(99 )00073-5

www.elsevier.com/locate/compstruc

* Corresponding author.



essential to model a structure with a torsional degree
of freedom.

Traditional system identi®cation techniques require
the full measurement of input excitation and its corre-
sponding responses. However, the input excitation is

generally di�cult to de®ne and accurately measure. In
addition, a real structure usually possesses a large
number of degrees of freedom. It is impossible and im-

practical to acquire full measurements because of lim-
ited number of sensors. Thus, system identi®cation
based only on response measurements at a few degrees

of freedom becomes necessary from a practical point
of view.
The random decrement method, originally developed

by Cole [10,11] for single measurements to detect

damage in aerospace structures, was commonly used
for the identi®cation of modal damping when only the

response data under random excitations was available.
Owing to its e�ciency and simplicity in processing vi-
bration measurements and the lack of requirement for

input excitation measurements, this method is exten-
sively applied to detect damage in civil [12] and o�-
shore structures [13]. The identi®cation of structural

parameters from time history responses has been inves-
tigated by many researchers [14±16]. Most of the avail-
able identi®cation techniques are mathematically

complicated and sensitive to noise. Few techniques
address the most critical factors such as (1) the number
and the location of measurements; (2) the direction of
measurements; (3) the mode coupling, and (4) the

Fig. 1. (a) Response measurement and crossing times. (b) Extraction of free decay signature from response measurement.
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number of modes for the response and noise levels as
related to the number of degrees-of-freedom allowed in

the identi®cation model. Among these methods, the
Ibrahim time domain (ITD) technique [17,18] was stu-
died most extensively and generally accepted as the

approach to solving the problem of noise contami-
nation and the number of measurements. However,
ITD technique is only applicable to free response data

and emphasizes the identi®cation of modal frequencies
and damping ratios. In the case of partial measure-
ments, only the mode shape values corresponding to

the instrumented degrees-of-freedom could be
obtained. To estimate the dynamic responses for the
locations without measurements, the complete mode
shapes should be found.

In this study, the random decrement method was
modi®ed by considering the correlation among
measurements to extract the free vibration responses of

a multi-story torsionally coupled building under ran-
dom excitations, which lead to the identi®cation of the
building's modal frequencies, damping ratios, and

mode shapes using the ITD technique. To obtain the
complete mode shapes, a mode shape interpolation
method was developed based on uniform shear modes

and orthogonality conditions. The seismic displace-
ment and acceleration responses for measured and
unmeasured locations are also estimated. Numerical
results show that the proposed method is able to ident-

ify structural dominant modal parameters and seismic
responses accurately even with highly close modes and
a noise-to-signal ratio of up to 20%. Small numbers of

response measurements, lack of necessity for input ex-
citation measurements and simple on-line calculations
make the proposed method favorable for actual im-

plementation.

2. Extended random decrement method

Let u(t ) be a response measurement (with or without
noise) at a certain location in a structure, as shown in

Fig. 1(a), induced by zero-mean, stationary random ex-
citations. This time history is divided into short seg-
ments with duration td, which is several times the

structural fundamental period. The random decrement
method consists of following analysis steps to obtain a
free decay response:

1. calculate an amplitude us, which is usually the root-
mean-square value of u(t );

2. select the starting time ti for each segment such that

u�ti � � us, i � 1,2,3, . . .

_u�ti �r0, i � 1,3,5, . . .

_u�ti �R0, i � 2,4,6, . . .

3. average Ns segments of the response measurement

to yield a time function, d�t�, i.e.

d�t� � 1

Ns

XNs

i�1
u�ti � t�, 0 < t < td �1�

called random decrement signature as shown in Fig.

1(b).

For a linear structure, its dynamic response can be
decomposed into three parts including response due to

initial displacement, initial velocity, and external load-
ing, respectively. Following step (2) of the random
decrement analysis procedure, the response due to in-

itial velocity cancels out because parts with positive
and negative initial slopes are alternatively taken and
their distributions are random. In addition, since the
external excitation is assumed to be a stationary ran-

dom process with zero-mean, the response due to
external loading also vanishes. Hence, d�t� represents a
free decay response due to initial displacement. Further

more, the unique form of random decrement signature
and the lack of requirement to input excitation
measurements make the random decrement method

very attractive to use for system parameter identi®-
cation and damage detection.
Basically, the original random decrement method

was developed to process a single measurement. For
the multiple measurements taken from a real building,
their correlations will be lost if the above analysis pro-
cedure is applied to each individual measurement inde-

pendently. To overcome this problem, in this study,
the crossing times ti in step (2) were determined from
one designated measurement. All measurements are

then processed following step (3), simultaneously, to
obtain their respective free decay signatures. For build-
ing structures, it is suggested that the lower ¯oor

measurement be used to determine the crossing times
because it contains greater weight for the higher
modes. Therefore, we can get enough number segments
to superimpose in Eq. (1) in a shorter record length.

This proposal was proved successful in the following
numerical example.

3. Ibrahim time domain technique

The free decay response at measured station l and

time tj obtained from Eq. (1) can be expressed as the
summation of m structural modes as

dl�tj � � xl,j �
X2m
k�1

jlkelktj �2�
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where lk and jlk represent the kth complex eigenvalue
and mode shape value at location l, respectively. The
modal frequency ok and damping ratio xk are then cal-

culated using

ok � jlkj, xk � ÿ
Re�lk �
ok

�3�

In Eq. (3), Re�lk� denotes the real part of lk: Suppose
that the responses at n di�erent stations are measured
and m modal properties are desired to be identi®ed.

We may use any m measurements for s instants (when
nrm� or repeat the available measurements (when
n < m� to construct the response matrix X using time

shifting schemes [19] such that

X � CCCLLL �4�

where

X �

266664
x 1,1 x 1,2 � � x 1,s

x 2,1 x 2,2 � � x 2,s

� � � � �
� � � � �

x 2m,1 x 2m,2 � � x 2m,s

377775 �5a�

CCC �

266664
j1,1 j1,2 � � j1,2m

j2,1 j2,2 � � j2,2m

� � � � �
� � � � �

j2m,1 j2m,2 � � j2m,2m

377775 �5b�

Fig. 2. N-story general torsionally coupled building.
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LLL �

266664
el1t1 el1t2 � � el1ts

el2t1 el2t2 � � el2ts

� � � � �
� � � � �

el2mt1 el2mt2 � � el2mts

377775 �5c�

Similarly, the response matrix ÃX corresponding to the

same measured stations and Dt later in time than those
in Eq. (4) can be expressed as

ÃX � ÃCCCLLL �6�
In Eq. (6), the entries of matrices ÃX and ÃCCC are related

using

x̂l,j �
X2m
k�1

ĵlkelktj , ĵlk � jlkelkDt �7�

The elimination of LLL from Eqs. (4) and (6) gives

ÃX � ÃCCCCCC
ÿ1

X � AX �8�
and

ACCC � CCCaaa �9�
where A is de®ned as the �2m� 2m� system matrix.

Eq. (8) is generally an over-determined system of sim-
ultaneous linear equations. The solution to obtain
matrix A is not unique. Several approaches such as
least square method and singular value decomposition

can be used. Moreover, Eq. (9) is a standard eigen-
value equation which can be solved using any conven-
tional method. The matrix aaa is a diagonal matrix

with entries ak � elkDt. Let ak � bk � igk and
lk � ak � ibk, �i �

�������ÿ1p �, then ak and bk are related
to bk and gk as

ak � 1

2Dt
ln
�
b2k � g2k

�
�10�

bk � 1

Dt
tanÿ1

� gk
bk

�
�11�

Once the eigenvalue lk is obtained, the kth modal fre-
quency and damping ratio are calculated from Eq. (3).
Based on the above derivations, it is also found that

the eigenvectors CCC of matrix A are the desired complex
mode shapes of the structure.

4. Torsionally coupled multi-story buildings

In reference to an ideal building consisting of rigid

¯oors supported on massless axially inextensible col-
umns and walls, the general torsionally coupled
multi-story buildings as shown in Fig. 2 have the fol-

lowing features: (1) The principal axes of resistance
for all of the stories are identically oriented, along

the x- and y-axes shown; (2) the centers of the mass
of the ¯oors do not lie on a vertical axis; (3) the cen-
ters of resistance of the stories do not lie on a verti-

cal axis, either, i.e. the static eccentricities at each
story are not equal; (4) all ¯oors do not have the
same radius of gyration r about the vertical axis

through the center of mass; and (5) ratios of the
three sti�ness quantitiesÐtranslational sti�nesses in x
and y directions, kxi and kyi, and torsional sti�ness

kyiÐfor any story are di�erent.
For the above general torsionally coupled N-stories

building, each ¯oor has three degrees-of-freedom: x-
and y-displacements, relative to the ground, of the cen-

ter of mass and rotation about a vertical axis. For
¯oor i, they are denoted by x i, yi and yi, respectively.
The undamped dynamic equations of motion for the

building subjected to two horizontal ground accelera-
tions �xg�t� and �yg�t�, assumed to be the same at all
points of the foundation, can be expressed as

M Èu� Ku � ÿMrÈug �12a�

where

u �

26666664
u1

u2

�
�
�

uN

37777775, r �

26666664
r1
r2
�
�
�

rN

37777775, Èug �
8<: �xg

�yg
0

9=;,

M �

266664
M1

M2

�
�

MN

377775

K �266666666664

K1,1 K1,2

K2,1 K2,2 K2,3

K3,2 K3,3 K3,4

� � �
� � �
� � �

KNÿ1,Nÿ2 KNÿ1,Nÿ1 KNÿ1,N
KN,Nÿ1 KN,N

377777777775
�12b�

In Eq. (12b)

ui �
8<: x i

yi
yi

9=; �13a�
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is the displacement subvector, ri � 3� 3 ground in¯u-
ence coe�cient matrix with elements of 0 and 1,

Mi �
24mi

mi

Ii

35 �13b�

is the mass submatrix in which mi and Ii are lumped
mass and mass moment of inertia at ¯oor i, respect-
ively;

Ki,iÿ1 �

266664
ÿkx i

0 kx i
eyiÿ1,i

0 ÿkyi ÿkyi ex iÿ1,i
ÿkyi

kx i
eyi,j ÿkyi ex i,i

ÿkx i
eyi,i eyiÿ1,i

ÿkyi ex i,i
ex iÿ1,i

377775
�i � 2, . . . ,N�

�13c�

Ki,i �

26666664
kx i
� kx i�1 0 ÿkx i

eyi,i ÿ kx i�1eyi,i�1
0 kyi � kyi�1 kyi ex i,i

� kyi�1ex i,i�1
kyi � kyi�1

ÿkx i
eyi,i ÿ kx i�1eyi,i�1 kyi ex i,i

� kyi�1ex i,i�1 �kx i
e2yi,i � kx i�1e

2
yi,i�1

�kyi e2x i,i
� kyi�1e

2
x i,i�1

37777775 �i � 1, . . . ,Nÿ 1� �13d�

Ki,i �

2664
kx i

0 ÿkx i
eyi,i

0 kyi kyi ex i,i

ÿkx i
eyi,i kyi ex i,i

kyi � kx i
e2yi,i � kyi e

2
x i,i

3775
�i � N� �13e�

Ki,i�1 �26666664
ÿkx i�1 0 kx i�1eyi�1,i�1

0 ÿkyi�1 ÿkyi�1ex i�1,i�1

ÿkyi�1
kx i�1eyi,i�1 ÿkyi�1ex i,i�1 ÿkx i�1eyi,i�1eyi�1,i�1

ÿkyi�1ex i,i�1ex i�1,i�1

37777775
�i � 1, . . . ,Nÿ 1� �13f�

are the sti�ness submatrices, where ex i,i
and ex i,i�1

denote the static eccentricities in x-axis at ¯oor i with
respect to story i and i� 1, respectively. The system

damping will be introduced as the viscous damping
ratio in each vibration mode.
After the formation of Eqs. (12a) and (12b), the

building's natural frequencies and mode shapes are
obtained by solving the eigenvalue problem. Because
of the existence of eccentricity, the vibration modes

could be highly close, leading to the di�culty in modal
parameter identi®cation.

5. Mode shape interpolation and sensor allocation

As mentioned previously, the ITD method could
estimate all desired modal frequencies and damping
ratios. In the case of partial measurements, only the

mode shape values at the instrumented degrees-of-free-
dom are identi®ed. To obtain the complete mode
shapes, in this study, a mode shape interpolation

method was developed to calculate the mode shape
values for the locations without measurements.
For an N-story torsionally coupled structure, the jth

mode shape CCCj is expressed as

CCCj �
24fffxj

fffyj

fffyj

35, j � 1,2, . . . ,3N �14�

where fffxj, fffyj and fffyj denote its components in the x,
y and y directions. It is reasonably assumed that the
fffxj, fffyj and fffyj of any torsionally coupled building
are the linear combination of the shear mode shapes,

jjjj, of its corresponding N-story uncoupled (or say pla-
nar) system with the same mass distribution and uni-
form sti�ness along the height. Then, we can form a

set of functions �jjj1 ÿ jjj2), �jjj1 ÿ jjj3), �jjj1 ÿ jjj4), . . . ,
�jjj1 ÿ jjjN� as the basic ingredients for mode shape in-
terpolation. Let p �pr2� be the number of ¯oors

where the vibration responses in x-, y- and y-direction
are measured. Then, the mode shape interpolation for-
mulae for all 3N mode shapes in d-direction �d � x,y,

or y� are expressed as

fffd,j � ad,j1jjj1 �
Xp�int��jÿ1�=3�

b�2
ad,jb�jjj1 ÿ jjjb �,

j � 1,2, . . . ,�Nÿ p� 1� � 3

�15a�

fffd,j � ad,j1jjj1 �
XN
b�2

ad,jb�jjj1 ÿ jjjb �,

j � �Nÿ p� 1� � 3� 1, . . . ,3N

�15b�

where int(-) indicates the integer part of the number in

parenthesis. ad,j1 and ad,jb are constant coe�cients to
be determined by the identi®ed mode shape values and

J. Ueng et al. / Computers and Structures 74 (2000) 667±686672



orthogonality conditions among the modes. For
instance, for a seven-story �N � 7� torsionally coupled

building in which three ¯oors �p � 3� are measured,
the ®rst three mode shapes are expressed as

fffx,1 � ax,11jjj1 � ax,12�jjj1 ÿ jjj2 � � ax,13�jjj1 ÿ jjj3 �
fffy,1 � ay,11jjj1 � ay,12�jjj1 ÿ jjj2 � � ay,13�jjj1 ÿ jjj3 �
fffy,1 � ay,11jjj1 � ay,12�jjj1 ÿ jjj2 � � ay,13�jjj1 ÿ jjj3 �

�16a�

fffx,2 � ax,21jjj1 � ax,22�jjj1 ÿ jjj2 � � ax,23�jjj1 ÿ jjj3 �
fffy,2 � ay,21jjj1 � ay,22�jjj1 ÿ jjj2 � � ay,23�jjj1 ÿ jjj3 �
fffy,2 � ay,21jjj1 � ay,22�jjj1 ÿ jjj2 � � ay,23�jjj1 ÿ jjj3 �

�16b�

fffx,3 � ax,31jjj1 � ax,32�jjj1 ÿ jjj2 � � ax,33�jjj1 ÿ jjj3 �
fffy,3 � ay,31jjj1 � ay,32�jjj1 ÿ jjj2 � � ay,33�jjj1 ÿ jjj3 �
fffy,3 � ay,31jjj1 � ay,32�jjj1 ÿ jjj2 � � ay,33�jjj1 ÿ jjj3 �

�16c�

Similarly, the 4th to 12th mode shapes are expressed

as

fffd,4 � ad,41jjj1 � ad,42�jjj1 ÿ jjj2 � � ad,43�jjj1 ÿ jjj3 �
� ad,44�jjj1 ÿ jjj4 � �17a�

fffd,5 � ad,51jjj1 � ad,52�jjj1 ÿ jjj2 � � ad,53�jjj1 ÿ jjj3 �
� ad,54�jjj1 ÿ jjj4 � �17b�

fffd,6 � ad,61jjj1 � ad,62�jjj1 ÿ jjj2 � � ad,63�jjj1 ÿ jjj3 �
� ad,64�jjj1 ÿ jjj4 � �17c�

fffd,7 � ad,71jjj1 � ad,72�jjj1 ÿ jjj2 � � ad,73�jjj1 ÿ jjj3 �
� ad,74�jjj1 ÿ jjj4 � � ad,75�jjj1 ÿ jjj5 � �18a�

fffd,8 � ad,81jjj1 � ad,82�jjj1 ÿ jjj2 � � ad,83�jjj1 ÿ jjj3 �
� ad,84�jjj1 ÿ jjj4 � � ad,85�jjj1 ÿ jjj5 � �18b�

fffd,9 � ad,91jjj1 � ad,92�jjj1 ÿ jjj2 � � ad,93�jjj1 ÿ jjj3 �
� ad,94�jjj1 ÿ jjj4 � � ad,95�jjj1 ÿ jjj5 � �18c�

fffd,10 � ad,101jjj1 � ad,102�jjj1 ÿ jjj2 �
� ad,103�jjj1 ÿ jjj3 � � ad,104�jjj1 ÿ jjj4 �
� ad,105�jjj1 ÿ jjj5 � � ad,106�jjj1 ÿ jjj6 � �19a�

fffd,11 � ad,111jjj1 � ad,112�jjj1 ÿ jjj2 �
� ad,113�jjj1 ÿ jjj3 � � ad,114�jjj1 ÿ jjj4 �
� ad,115�jjj1 ÿ jjj5 � � ad,116�jjj1 ÿ jjj6 � �19b�

fffd,12 � ad,121jjj1 � ad,122�jjj1 ÿ jjj2 �
� ad,123�jjj1 ÿ jjj3 � � ad,124�jjj1 ÿ jjj4 �
� ad,125�jjj1 ÿ jjj5 � � ad,126�jjj1 ÿ jjj6 � �19c�

and ®nally, the 13th±21st mode shapes are expressed

in terms of all of the basis ingredients

fffd,j � ad,j1jjj1 � ad,j2�jjj1 ÿ jjj2 � � ad,j3�jjj1 ÿ jjj3 �
� ad,j4�jjj1 ÿ jjj4 � � ad,j5�jjj1 ÿ jjj5 �
� ad,j6�jjj1 ÿ jjj6 � � ad,j7�jjj1 ÿ jjj7 �

j � 13,14, . . . ,21

�20�

As we can see from Eqs. (16a)±(16c), in the ®rst three
mode shape interpolation formulae, there are nine

unknown constant coe�cients, ad,j1 and ad,jb, which
can be determined by the nine identi®ed mode shape
values at the three measured ¯oors in three directions

and double-checked by the orthogonality conditions
among the ®rst three modes. In the fourth mode shape
interpolation formulae of Eq. (17a), there are 12

unknowns. They are again determined using the nine
identi®ed mode shape values and three orthogonality
conditions between the fourth and the identi®ed ®rst

three modes. So are the same calculation procedures
for the remaining modes. Finally, the fourth to sixth
mode shapes are modi®ed using the orthogonality con-
ditions among themselves. It has been veri®ed that

with any p �pr2� measured ¯oors (3p response
measurements), there are always enough conditions to
determine the unknown coe�cients. This proves that

the proposed mode shape interpolation method is feas-
ible.
It is obvious that the number and location of the

measurements will a�ect the accuracy of the parameter
identi®cation. The more ¯oor responses measured, the
more accurate the modal parameters obtained. For a
high-rise building, it is suggested that at least three

¯oor responses (at low, medium and top ¯oor, respect-
ively) be measured. Then, using the proposed mode
shape interpolation technique, we can obtain the com-

plete dominant mode shapes accurately. In particular,
for a class of regular torsionally coupled buildings
which have the same geometry in plan and the same

locations for columns and shear walls, their modal fre-
quencies and mode shapes may be determined by ana-
lyzing the modal parameters of their corresponding
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torsionally uncoupled systems and an associated one-
story torsionally coupled system [20,21]. For such a

regular torsionally coupled building, the number of
sensors can be further reduced. It has been demon-
strated [22] that only three sensors instrumented at the
low, medium and top ¯oors to measure either x or y

translations, and another three sensors installed at a
certain lower ¯oor to measure its x, y and y responses
are enough to calculate the complete modal parameters

of the torsionally coupled system.

6. Numerical veri®cations

A seven-story �N � 7� general torsionally coupled

building is presented to demonstrate the e�cacy of the
proposed mode shape interpolation technique and
modal parameter identi®cation procedure. The system
properties of the model structure are given in Table 1.

First of all, to verify the mode shape interpolation
method, assumed that the mode shape values in 1F,
4F, 7F (case 1) and 1F, 7F (case 2) are known. The

complete ®rst six mode shapes calculated using Eqs.
(15a) and (15b) for both cases are shown in Fig. 3.
There are very good agreement between the calculated

and the true mode shapes even with a minimum num-

ber of known ¯oor values as in case 2. This indicates
the accuracy and e�cacy of Eqs. (15a) and (15b). In

Fig. 3, case 1 has better results than case 2, as
expected.
Rayleigh damping is assumed for the ®rst and sec-

ond modal damping ratios x1 � x2 � 5% to generate

the ¯oor responses. Then, we consider that the system
properties are unknown and carry out the identi®-
cation procedure. Two cases, noise-free and random

noise [23] with noise-to-signal ratio (NSR) equal to
20%, are studied to investigate the sensitivity of noise
level to the identi®cation accuracy. For all ¯oor re-

sponse measurements, the complete modal parameters
can be identi®ed even with noise contamination.
Again, two cases of partial ¯oor measurements at 1F,

3F, 5F, 7F (case 1) and at 1F, 4F, 7F (case 2) are stu-
died to investigate the e�ect of the number of measure-
ments on the identi®cation accuracy. Fig. 4 shows the
response measurements at 1F, 4F, 7F in x, y and y
directions for NSR � 20% under a random environ-
mental load. The corresponding free decay responses
extracted by the extended random decrement method

are shown in Fig. 4 The ®rst six identi®ed modal fre-
quencies and damping ratios using the ITD method
versus the actual ones for both cases with di�erent

noise levels are given in Table 2. It is found that for

Table 1

System properties of example seven-story torsionally coupled building

Floor i Mass mi (kg) Inertia, Ii (kg/m
2) C.M. �x i,yi � (m) Story, i kx i

(N/m) kyi (N/m) kyiM (N/m) C.R. �x i,yi � (m)

1 2:0� 105 1:28� 107 (1.0,1.0) 1 9:0� 108 8:5� 108 5:0� 1010 (4.0,4.0)

2 2:0� 105 1:28� 107 (1.0,1.0) 2 9:0� 108 8:5� 108 5:0� 1010 (4.0,4.0)

3 2:0� 105 1.28� 107 (1.0,1.0) 3 9:0� 108 8:5� 108 5:0� 1010 (4.0,4.0)

4 1:9� 105 1:07� 107 (0.8,0.9) 4 8:5� 108 7:5� 108 4:5� 1010 (3.2,3.0)

5 1:9� 105 1:07� 107 (0.8,0.9) 5 8:5� 108 7:5� 108 4:5� 1010 (3.2,3.0)

6 1:9� 105 1:07� 107 (0.8,0.9) 6 8:5� 108 7:5� 108 4:5� 1010 (3.2,3.0)

7 1:8� 105 8:82� 106 (0.8,0.9) 7 8:0� 108 7:0� 108 4:0� 1010 (2.8,2.9)

Table 2

Identi®ed modal frequencies and damping ratios

Mode no. Natural frequency (Hz) Damping ratio (%)

True NSR � 0% NSR � 20% True NSR � 0% NSR � 20%

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

1 1.718 1.720 1.725 1.712 1.712 5.00 5.06 5.06 4.71 4.83

2 2.234 2.238 2.243 2.243 2.244 5.00 5.47 5.73 4.14 3.93

3 2.926 2.927 2.933 2.944 2.930 5.36 5.39 5.49 6.60 5.84

4 5.049 4.945 4.970 5.157 5.138 7.35 5.26 3.83 1.43 1.57

5 6.407 6.340 6.310 6.166 6.130 8.86 2.62 nia 4.20 nia

6 7.936 7.696 nia nia nia 10.65 0.49 nia nia nia

a ni: Not identi®ed.
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Fig. 3. Calculated vs. true mode shapes of example torsionally coupled building.
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Fig. 3 (continued)
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Fig. 4. Response measurements and free decay response at 1F, 4F and 7F in x, y, y directions �NSR � 20%).
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Fig. 4 (continued)
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Fig. 4 (continued)
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Fig. 5. Calculated vs. true mode shapes of example torsionally coupled building with 1F, 4F, 7F measurements.
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the noise-free case, the frequencies identi®ed are almost

identical to the true ones. The accuracy of the damping

ratio identi®cation is not as good as that for modal

frequency and mode shape, but it is still acceptable.

The main discrepancy is due to the error for free decay

responses obtained using the random decrement

method. If true free responses are used, both modal

frequencies and damping ratios can be identi®ed very

accurately [22]. Moreover, the estimation error

increases as the noise level becomes high. As

NSR � 20%, the proposed method is still able to ident-

ify most of the dominant modal parameters accurately

even with highly coupled modes. This identi®cation

result is generally adequate for building structures

because the total responses are dominated by the ®rst

few modes. As expected, case 1 has better results than

case 2 because of greater ¯oor response measurements.

The complete ®rst three mode shapes for case 2 cal-

culated by Eqs. (15a) and (15b) are shown in Fig. 5

for NSR � 0% and 20%. There is good agreement

between the estimated and true mode shapes. Further-

more, based on the identi®ed modal parameters with

NSR � 20%, the predicted relative displacement and

absolute acceleration at the sixth ¯oor (unmeasured lo-

cation) and top ¯oor (measured location) and the base

shear in the x-direction for the building under the El

Centro (S00E,1940) earthquake are shown in Figs. 6

and 7. Since the dominant modal properties are accu-

rately estimated, so are the dynamic responses. For

both cases studied with NSR � 0% and 20%, the peak

Fig. 6. (a) Predicted 6F and 7F relative displacement in x-direction under El centro earthquake (case 1, NSR � 20%). (b) Predicted

6F and 7F absolute acceleration and base shear in x-direction under El centro earthquake (case 1, NSR � 20%).
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Fig. 6 (continued)
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Fig. 7. (a) Predicted 6F and 7F relative displacement in x-direction under El centro earthquake (case 2, NSR � 20%). (b) Predicted

6F and 7F absolute acceleration and base shear in x-direction under El centro earthquake (case 2, NSR � 20%).

Table 3

Peak responses estimation under El centro earthquake

Responses True NSR � 0% NSR � 20%

Case 1 Case 2 Case 1 Case 2

x 6 (cm) 4.02 4.06 (+1.0%) 4.06 (+1.0%) 3.95 (ÿ1.7%) 3.95 (ÿ1.7%)

x 7 (cm) 4.18 4.23 (+1.2%) 4.23 (+1.2%) 4.12 (ÿ1.4%) 4.11 (ÿ1.7%)

�x6 (g) 0.683 0.679 (ÿ0.6%) 0.679 (ÿ0.6%) 0.660 (ÿ3.4%) 0.665 (ÿ2.6%)

�x7 (g) 0.698 0.715 (+2.4%) 0.713 (+2.1%) 0.685 (ÿ1.9%) 0.686 (ÿ1.8%)

x-Base shear (N) 6.6� 106 6:2� 106 (ÿ6.1%) 6:2� 106 (ÿ6.1%) 6:1� 106 (ÿ7.6%) 6:0� 106 (ÿ9.1%)
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Fig. 7 (continued)
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and root-mean-square (RMS) responses at measured
and unmeasured locations are listed in Tables 3 and 4.

All estimation errors are below 10%. Both estimated
response errors increase as the noise level increases. In
general, the responses at the measured locations are
predicted more accurately than those at unmeasured

locations when the measurement noise level is high, as
we expected.

7. Conclusions

In this study, a modal parameter identi®cation
method, which modi®es the Ibrahim time domain tech-
nique and the random decrement method was devel-

oped to identify the frequencies and damping ratios of
general torsionally coupled buildings based on only a
few ¯oor response measurements due to ambient vi-

bration excitations. In order to estimate the dynamic
responses at each degree-of-freedom, a mode shape in-
terpolation method was developed further to calculate
the mode shape values for the locations without

measurements. All estimated mode shapes were
mutually orthogonal. A study of the theoretical and
numerical results indicates that two or more ¯oor re-

sponse measurements are adequate to identify the
dominant modal properties of a general torsionally
coupled building. The number of sensors was very

small compared to the degree of freedom of the struc-
ture. Moreover, for a high-rise building, it is suggested
that three (at low, medium and top) ¯oor responses be
measured so that the complete dominant modal prop-

erties can be accurately obtained. Since the dominant
modal frequencies and damping ratios and complete
mode shapes are accurately identi®ed even with noise

contamination, the seismic responses at both measured
and unmeasured locations are thus accurately esti-
mated. A small number of response measurements, no

requirement for input excitation measurements and
simple on-line calculations make the proposed method
favorable for implementation in real buildings.
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